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Some loose topics
(Before getting started on memory systems)

J Microprogramming
o Now seems to mean a combination of two different things!



Microprogramming of old
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Microprogramming of old

(J Control logic operation described as
a Finite State Machine (FSM)

o Next state depends on current state,
and input to the control logic

o Control signal output depends on
current state of the FSM
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M ICrOprogrammlng Of Old Programmable Logic Array (PLA)
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Microprogramming of new: CISC and x86

(J x86 ISA is CISC (“Complex”)

Hex Mnemonics
C3 ret
48 b8 88 77 66 55 movabs rax,0x1122334455667788

44 33 22 11

64 ff 03 DWORD PTR fs:[ebx]

64 67 ff 07 inc PTR fs:[bx]
2e c4 e2 71 96 84 vimaddsubl132ps xmmO, xmml,
be 34 23 12 01 xmmword ptr cs:

[esi + edi * 4 + 0x11223344]

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017



Microprogramming of new: CISC and x86

(J Modern microarchitectural advances are difficult to get right on CISC
architectures

o Superscalar, Out-of-Order, Transactional memory, etc
o Too many conditions and states to keep track of!

[ Instead, modern CISC processors internally implement a RISC core with
modern bells and whistles

o e.g., AMD’s patented RISC86 ISA
o “Front-end” x86 ISA translated by CPU hardware on-the-fly to RISC instructions

load temp, [ esp ]

pop [ebx] > store [ ebx ], temp

addesp, 4

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017



Microprogramming complex instructions
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Microprogramming of new

J Microprogramming can be used to generate a sequence of control signals
per input instruction
o Implemented via a chain of FSM states in the control logic

o No longer designed manually though! Lots of tool research into efficient
microcode compilation

o Usually multiple “decoders” operating in parallel

J We know traditional techniques are still used

== O OO0 OO0 OO0 OO OO0 OO O

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017



Aside: Microcode and bug patches

(J Modern CPUs have programmable portion of the microcode storage

O

O
O
O

No longer entirely ROM
Programmable portion takes precedence over original microcode
Makes live bug patches possible!

Implement same x86 instruction using a different (“bug free”) sequence of
microcode operations

J For example, CPU patches for the infamous Spectre exploit involved
microcode patches
o When “BIOS updates” are required, this is often what’s happening



Some loose topics
(Before getting started on memory systems)

J Superscalar
o Just a taste!



Superscalar Processing

J An ideally pipelined processor can handle up to one instructions per
cycle

O

Instructions Per Cycle (IPC) = 1, Cycles Per Instruction (CPI) = 1

(J Superscalar wants to process multiple instruction per cycle

O

O
O
O

IPC > 1, CPI <1
An N-way superscalar processor handles N instructions per cycle
Requires multiple pipeline hardware instances/resources

Hardware performs dependency checking on-the-fly between concurrently-
fetched instructions



Pipeline for superscalar processing

J Multiple copies of the datapath supports multiple instructions/cycle
1 Register file needs many more ports
J Actually requires a complex scheduler in the decode stage!

Register
File

Fetch » Decode » Execute » Memory > Writeback

Decode Execute Memory Writeback




Superscalar has concurrent hazards

J What if two concurrently issued instructions have dependencies?
o No choice but to stall the dependent instruction...
O ...inanin-order pipeline! « Topic for another day

(] Data hazards

o e.g. “addisl, sO, 1” and “addi s2, s1, 1” issued at the same time?
* Forwarding won’t work here! Both instructions in decode stage at the same time
* Scheduler must stagger “addi s2, s1, 1”, sacrificing performance

J Control hazards

o e.g., How to handle a beq, followed by another instruction?
* Branch prediction, as usual

Results in very complex control logic! (Chip resources/cost!)



In-order superscalar example

Ideal IPC = 2 (2-Way superscalar)
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>
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lw t0, 40($s0)
1w N $s0N

3
add t1, $s1, $s2 b 5e0, 40(s0) [ o [TER—
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DM—
add $tl, $sl, $s2 add 552 I
sub t2, s1, s3 - - . 8
V $Slv v V$t2
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No dependencies between
any instructions

Actual IPC = 2 (6 instructions issued in 3 cycles)

Source: Onur Mutlu, “Design of Digital Circuits,” Lecture 16, 2019



In-order superscalar with dependencies

Ideal IPC = 2 (2-Way superscalar)
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Actual IPC = 1.2 (6 instructions issued in 5 cycles)

Source: Onur Mutlu, “Design of Digital Circuits,” Lecture 16, 2019



In the real-world: Core 17 performance

1 Core i7 has a 4-way Out-of-Order
Superscalar pipeline
o ldeally, 0.25 Cycles Per Instruction (CPI)

o Dependencies and misprediction
typically results in much lower
performance

CPI

Is it worth it? Or do we want just more, simpler cores?
Depends on your target area (servers? phones?) and
profiling results...
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In the real-world: Core 17 performance

1 Branch predictors work pretty well!

o But deep/wide pipelines result in high
mispredict overhead
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Some loose topics
(Before getting started on memory systems)

1 Hardware Performance Counters
o Small number of special-purpose registers (few dozens in modern x86)
o User-configured to count hardware activities
o E.g., number of issued instructions, cache misses, branch mis-predicts, etc
o Important for performance profiling! (And some security attacks)

] Easiest is to use utility “perf” ; .

[shdo] password for

Performance counter stats for 'sleep 1':

CPUs utilized
K/sec
K/sec
M/sec
GHz
insn per cycle
M/sec
% of all branches

1.293090 task-clock (msec)
1 context-switches
0 cpu-migrations
60 page-faults
1,024,993 cycles
841,073 instructions
163,636 branches
7,572 branch-misses

=
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1.002117785 seconds time elapsed



Some loose topics
(Before getting started on memory systems)

J Macro-op fusion

o Multiple instructions can be “fused” into a larger one
* Two four-byte instruction treated as one 8-byte one
* This is independent from ISA design!
o Why?
e Smaller number of instructions to process
* While still maintaining RISC ISA (Also used in CISC / x86 with smaller instructions)

» Typical criticism of RISC is a larger number of generated instructions for same program
* (More cycles to execute same program)

// rd = array[offset]

add rd rs1, rs2
' f Can be fused into one instruction
Id rd, O(rd) Without more functionality in the execute stage

Source: Wikichip



